wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The scalar product of the vector ^i+^j+^k with a unit vector along the sum of vectors 2^i+4^j5^k and λ^i+2^j+3^k is equal to one. Find the value of λ.

Open in App
Solution

Solution :-
Let a=^i+^j+^k
b=2^i+4^j5^k
c=λ^i+2^j+3^k
(b+c)=(2+λ)^i+(4+2)^j+(5+3)^k
=(2+λ)^i+6^j2^k
Let r be unit vector along (b+c)
^r=1|b+c|×(b×c)
^r=1(2+λ)2+36+4×[(2+λ)^i+6^j2^k]
^r=1λ2+4λ+44×[(2+λ)^i+6^j2^k]
Now a.r=1 (given)
(^i+^y+^k).(1λ2+4λ+44×(2+λ)^i+6^j2^k))=1
(^i+^j+^k)((2+λ)^i+6^y2^k)=λ2+4λ+44
(λ+2)+1.6+1.(2)=λ2+4λ+44
λ+2+62=λ2+4λ+44
(λ+6)2=λ2+4λ+44
λ2+12λ+36=λ2+4λ+44
8λ=8
λ=1

1112692_1144516_ans_079af83d7ae8422594a4e724ec6c9e5f.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Unit Vectors
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon