Let →a=2^i+4^j−5^k and →b=λ^i+2^j+3^k
Then,
→a+→b=(2+λ)^i+6^j−2^k
Unit vector along →a+→b=(2+λ)^i+6^j−2^k√(2+λ)2+62+(−2)2
Given, (^i+^j+^k).(2+λ)^i+6^j−2^k√(2+λ)2+62+(−2)2=1
⇒1×(2+λ)+1×6+1×(−2)=√(2+λ)2+40
⇒λ+6=√(2+λ)2+40
⇒λ2+12λ+36=4+4λ+λ2+40
⇒12λ+36=4λ+44⇒λ=1