The correct option is C 1
→a=^i+^j+^k
→b=2^i+4^j−5^k
→c=λ^i+2^j+3^k
So, →b+→c=(2+λ)^i+6^j−2^k
Unit vector along →b+→c=(2+λ)^i+6^j−2^k√(2+λ)2+36+4
Given that dot product of →a with the unit vector along the →b+→c is equal to 1.
So, ((2+λ)^i+6^j−2^k√(2+λ)2+40)⋅(^i+^j+^k)=1
⇒(2+λ)+6−2√(2+λ)2+40=1
⇒(2+λ)+4=√(2+λ)2+40
Squaring both sides,
⇒(2+λ)2+16+8(2+λ)=(2+λ)2+40
⇒32+8λ=40
⇒8λ=8
⇒λ=1