Let the two vectors be,
b → =2 i ^ +4 j ^ −5 k ^ c → =λ i ^ +2 j ^ +3 k ^
The sum of vectors are,
b → + c → =2 i ^ +4 j ^ −5 k ^ +λ i ^ +2 j ^ +3 k ^ b → + c → =( 2+λ ) i ^ +( 4+2 ) j ^ +( −5+3 ) k ^ b → + c → =( 2+λ ) i ^ +6 j ^ −2 k ^
It is given that vector a → = i ^ + j ^ + k ^ has scalar product with a unit vector along b → + c → , then,
( i ^ + j ^ + k ^ )( 1 λ 2 +4λ+44 ×( ( 2+λ ) i ^ +6 j ^ −2 k ^ ) )=1 1 λ 2 +4λ+44 ( 1 i ^ +1 j ^ +1 k ^ ).( ( 2+λ ) i ^ +6 j ^ −2 k ^ )=1 1.( λ+2 )+1.6+1.( −2 )= λ 2 +4λ+44 λ+6= λ 2 +4λ+44
Squaring both sides of the above equation,
( λ+6 ) 2 = λ 2 +4λ+44 λ 2 +12λ+36= λ 2 +4λ+44 λ 2 − λ 2 +12λ−4λ=44−36 λ=1
Thus, the value of λ=1.