Number of items in 1st group=250−100=150 items.
let 1st group has items y1,y2,⋯,y150 and
2nd group has items x1,x2,⋯,x100
Now for second group
¯x=15,σ22=9
∴9=∑xi2n−¯x2=∑xi2100−152
⇒∑xi2=23400 ⋯(1)
For whole group,
13.44=∑(x2i+y2i)250−(15.6)2
⇒∑(x2i+y2i)=64200
⇒∑y2i=64200−23400=40800 ⋯(2) (from (1))
now,
mean of 1st group=250×15.6−100×15150=16
Now for 1st group,
σ21=∑y2i150−162=40800150−256
σ2=16
∴σ=4
Alternate solution:
From the given data,
σ2=9; σ=(√13.44)
¯x2=15; ¯x=15.6
n2=100; n=250
So, n1=150
¯x=n1¯x1+n2¯x2n1+n2
⇒15.6=150(¯x1)+100(15)250
⇒¯x1=16
Using Combined Variance formulae,
σ2=1n1+n2[n1(σ21+d21)+n2(σ22+d22)]
where d1=¯x−¯x1=15.6−16=−0.4
d2=¯x−¯x2=15.6−15=0.6
∴13.44=1250[150(σ21+0.16)+250(9+0.36)]
⇒σ21=16
⇒σ1=4