The correct option is A 1
nth moment of a Random variable is given as
E[xn]=∫∞−∞xnfx(x)dx
Now, x→x−¯x; ¯x= mean value of Random Variable x
⇒ E[[x−¯x]n]=∫∞−∞(x−¯x)nfx(x)dx
Now, if n=2 [second moment]
⇒ E[(x−¯x)2]=∫∞−∞(x−¯x)2fx(x)dx=σ2x
(Variance) [as per definition]
Hence, Variance of a random variable:
σ2x=E[x2]−E2[x] ...(i)
Let mean value of poisson-distributed random variable x is λ and we know that Mean = Variance.
In case of Poisson distribution,
So λ=2−λ2 (using (i))
⇒ λ2+λ−2=0
⇒ λ=1,−2
∵ λ≠−2
∴ λ=1