wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The segment of the tangent at the point P to the ellipse x2a2+y2b2=1, intercepted by the auxiliary circle subtends a right angle at the origin. If the eccentricity of the ellipse is smallest possible, then the point P can be

A
(0,ae)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(a,0)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a,0)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(0,b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (0,b)
Equation of tangent at P(acosθ,bsinθ) is
xcosθa+ysinθb=1
Equation of the lines OA and OB is
x2+y2a2(xcosθa+ysinθb)2=0
since the lines OA and OB are perpendicular
1cos2θ+1a2b2sin2θ=0
i.e sin2θ+1a2b2sin2θ
i.e b2a2=sin2θ1+sin2θ
e2=1b2a2=1sin2θ1+sin2θ=11+sin2θ
e is least if θ=±π2
the point P is (0,±b)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Lines and Points
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon