The semi vertical angle of right circular cone of maximum volume of a given slant height is
Let h,l,r be the height, slant height and radius of the cone
And let α be the semi vertical angle of the cone
l2=h2+r2
Volume =13πr2h
V=13πh(l2−h2)
V=π3(l2h−h3)
dVdh=π3(l2−3h2)
d2Vdh2=π3(−6h)
For critical point dVdh=0
π3(l2−3h2)=0
l2=3h2
h=l√3
d2Vdh2 at h=l√3=π3(−6l√3)<0
So, volume of cone is maximum, when
h=l√3
l2=3h2
h2+r2=3h2
r=√2h
rh=√2
tanα=√2
α=tan−1√2