The series of natural numbers is divided into groups 1 ; 2, 3, 4 ; 5, 6, 7, 8, 9, 10, 11 ; 12 to 26..... and so on. The sum of the numbers in the nth group is a.22n−1−(2n+b)2n−1+n+1, then evaluate a + b.
Open in App
Solution
Number of terms in each group 1, 3, 7, 15,.......... lasttermineachgroup1,4,11,26............an NowS=1+4+11+26.............+an S=1+4..............................an - --------------------------------------------------------------- ⇒an=1+3+7+15.......nterm an=1+3+7+15...........nterm an=1+3+7...............nthterm - ----------------------------------------------------------------------- nthterm=1+2+4+8+............=(2n−1) So an=∑nn=1(2n−1)=2(2n−1)−n Solasttermofnthgroup=2(2n−1)−n lasttermof(n−1)thgroup=2[2n−1−1]−(n−1) Sumofthenumbersinthenthgroup ={1+2+3......¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2(2n−1)−n} −{1+2+3......¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2(2n−1−1)−(n−1)} (2n+1−n−2)(2n+1−n−1)−{2n−(n−1)}(2n−n)2 =3.22n−1−(2n+5)2n−1+(n+1) a+b=8