The set of all real numbers x for which x2−|x+2|+x>0 is
(−∞,−√2)∪(√2,∞)
Given, x2−|x+2|+x>0....(i)
Case I When x+2≥0
∴x2−x−2+x>0⇒x2−2>0⇒x<−√2 or x>√2⇒x∈[−2,−√2)∪(√2,∞)....(ii)
Case II When x + 2 < 0
∴x2+x+2+x>0⇒x2+2x+2>0⇒(x+1)2+1>0
Which is true for all x.
∴x≤−2 or x∈(−∞,−2)...(iii)
From Eqs. (ii) and (iii), we get
x∈(−∞,−√2)∪(√2,∞)