The correct option is A {1,60}
log3x.log4x.log5x=log3x.log4x+log4x.log5x+log5x.log3x ....(1)
For x=1, both parts of the equation (1) vanish.
Therefore, x=1 is root of the equation (1).
For x≠1,
log3x.log4x.log5x=log3x.log4x+log4x.log5x+log5x.log3x
Divide both sides by log3x.log4x.log5x
⇒1=1log5x+1log3x+1log4x=logx5+logx3+logx4[∵logab=1logba]
=logx60[∵loga+logb+logc=log(abc)]
⇒x=60
Thus, x={1,60}
Ans: B