The correct option is B (0,1)∪(1,4)
f(x)=(a2=−3a+2)(cos2x/4−sin2x/4)+(a−1)x+sin1
⇒f(x)=(a−1)(a−2)cosx/2+(a−1)x+sin1
⇒f′(x)=−12(a−1)(a−2)sinx2+(a−1)
⇒f′(x)=(a−1)[1−(a−2)2sinx2]
If f(x) does not possess critical points, then f′(x)≠0 for any xϵR
⇒(a−1)[1−(a−2)2sinx2]≠0 for any xϵR
⇒a≠1 and 1−(a−22)sinx2=0
must not have any solution in R.
⇒a≠1 and sinx2=2a−2 is not solvable in R.
⇒a≠1 and ∣∣∣2a−2∣∣∣>1 [For a=2,f(x)=x+sin1∴f′(x)=1≠0]
⇒a≠1 and |a−2|<2⇒a≠1 and −2<a−2<2
⇒a≠1 and 0<a<4⇒aϵ(0,1)∪(1,4).