The correct option is D (1,52]
3x2+4x+2>0 ∀x∈R (∵D<0)
(3x2+4x+3)2–(k+1)(3x2+4x+3)(3x2+4x+2)+k(3x2+4x+2)2=0
⇒(3x2+4x+33x2+4x+2)2−(k+1)(3x2+4x+33x2+4x+2)+k=0⋯(i)
Let 3x2+4x+33x2+4x+2=t
⇒t=3x2+4x+2+13x2+4x+2=1+13x2+4x+2
3x2+4x+2∈[23,∞)
⇒13x2+4x+2∈(0,32]
⇒t=1+13x2+4x+2∈(1,52]
⇒t2−(k+1)t+k=0 where t∈(1,52]⋯(ii)
(ii) should have at least one root in (1,52]
⇒(t−1)(t−k)=0
⇒t=1,t=k
∴k∈(1,52]