We have,
f(x)=|4sinx−1|<√5
If x∈π2
Then,
f(x)=|4sinx−1|
f(π2)=∣∣∣4sinπ2−1∣∣∣
f(π2)=|4×1−1|
f(π2)=|3|
f(π2)=3>√5
If x∈−π2
f(π2)=∣∣∣4sin(−π2)−1∣∣∣
f(π2)=|4×(−1)−1|
f(π2)=|−5|
f(π2)=5>√5
Hence, this is the answer.