The set of all x satisfying the equation xlog3x2+(log3x)2−10=1x2 is
A
{1,9}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
{1,9,181}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
{1,4,181}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
{9,181}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B{1,9,181} xlog3x2+(log3x)2−10=1x2 where, x>0 ⇒[log3x2+(log3x)2−10]logx=−2logx
[log3x2+(log3x)2−10]logx+2logx=0
Taking logx common,
logx([log3x2+(log3x)2−10]+2)=0 if ⇒logx=0 ⇒x=1 ....(1) or log3x2+(log3x)2−10=−2 ⇒(log3x)2+2log3x−8=0 ⇒log3x=−4,2 ⇒x=181,9 ...(2) From (1) & (2) x∈{1,9,181} Ans: B