wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
(a) R
(b) R − {3}
(c) (0, ∞)
(d) none of these

Open in App
Solution

(b) R-3

LHD at x=3=limx3-fx-f3x-3LHD at x=3=limh0f3-h-f33-h-3LHD at x=3=limh0f3-h-f3-hLHD at x=3=limh03-h-3cos3-h-f3-hLHD at x=3=limh0hcos3-h-0-h=-cos3RHD at x=3=limx3+fx-f3x-3RHD at x=3=limh0f3+h-f33+h-3RHD at x=3=limh0f3+h-f3hRHD at x=3=limh03+h-3cos3+h-f3hRHD at x=3=limh0hcos3+h-0h=cos3

So, f(x) is not differentiable at x = 3.

Also, f(x) is differentiable at all other points because both modulus and cosine functions are differentiable and the product of two differentiable function is differentiable.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon