The set of real values of x satisfying the equation
|x−1|log3(x2)−2logx(9)=(x−1)7
is
{81}
|x−1|log3(x2)−2logx(9)=(x−1)7(log3x2−2logx9)log|x−1||x−1|=7log|x−1|(x−1)log3x2−2logx9=72log3x−4×1log3x=7Let log3x=t2t−4t=72t2−7t−4=0(t−4)(2t+1)=0t=4,t=−12log3x=4 log3x=−12x=81,x=1√3<1 ∴x≠1√3