The set of solutions satisfying both x2+5x+6≥0 and x2+3x−4<0 is
The correct option is C ((−4,−3]∪[−2,1))
Given inequalities x2+5x+6≥0 and x2+3x−4<0
⇒x2+3x+2x+6≥0 and x2+4x−x−4<0
⇒x(x+3)+2(x+3)≥0 and x(x+4)−1(x+4)<0
⇒(x+3)(x+2)≥0 and (x+4)(x−1)<0
⇒x≤−3 or x≥−2and −4<x<1
∴x ϵ(−4,−3]∪[−2,1)