We have,
x2−2ax+a2−6a≤0in(1,2)
Now, Put x=1 and we get,
1−2a+a2−6a≤0
⇒a2−8a+1≤0
Using quadratic formula and we get,
a=8±√64−42
a=8±√602
a=4±√15
If,
a≤0
4−√15≤0
Now,
Put x=2 and we get,
22−2a×2+a2−6a≤0
⇒4−4a+a2−6a≤0
⇒a2−10a+4≤0
Using quadratic formula and we get,
a=10±√100−162
a=10±√842
a=10±√842
a=5±√21
For,
a≤0
5±√21≤0
5−√21≤0
Hence, [4−√15,5−√21]