The correct option is A [499,∞)
Given,
(√a−1)x2−(√a+1) x+√a−1≥0
⇒√a(x2−x+1)−(x2+x+1)≥0
[∵(x2−x+1)>0,(x2+x+1)>0, ∀ x∈R]
⇒√a≥x2+x+1x2−x+1
⇒√a≥1+2xx2−x+1⇒√a≥1+2x+1/x−1
Now
32≤x+1x−1<∞, ∀ x≥2⇒0<1x+1x−1≤23, ∀ x≥2⇒1+0<1+2x+1x−1≤1+43, ∀ x≥2
∴1+2x+1x−1∈(1,73]⇒√a≥73⇒a∈[499,∞)