The correct option is D [1,4]
f(x)=x3+(a+2)x2+3ax+5
For x1,x2∈R
Let, f(x1)=f(x2)
⇒x31+(a+2)x21+3ax1+5=x32+(a+2)x22+3ax2+5
⇒x31−x32+(a+2)(x21−x22)+3a(x1−x2)=0
⇒(x1−x2)(x21+x22+x1x2+(a+2)(x1+x2)+3a)=0
Since f is one-one,
∴x1=x2 ⋯(1)
Let y=x21+x22+x1x2+(a+2)(x1+x2)+3a
Since, x1=x2=x (say)
⇒y=3x2+2x(a+2)+3a
The equation y=0 has two roots i.e, x1,x2.
So, the function f(x) should be one-one only when
x1=x2 or y≠0
∴D≤0
⇒4(a+2)2−4⋅3⋅3a≤0
⇒a2−5a+4≤0⇒(a−1)(a−4)≤0
⇒a∈[1,4]