The correct option is C [5−√212,5+√212]
22x2−10x+3+6x2−5x+1≥32x2−10x+3
2.22(x2−5x+1)+(3.2)x2−5x+1−3.32(x2−5x+1)≥0
Factorize
2.22(x2−5x+1)−2×(3.2)x2−5x+1+3×(3.2)x2−5x+1−3.32(x2−5x+1)≥0
2.2(x2−5x+1)(2(x2−5x+1)−3(x2−5x+1))+3(3)x2−5x+1(2(x2−5x+1)−3(x2−5x+1))≥0
(2(x2−5x+1)−3(x2−5x+1))(2.2(x2−5x+1)+3.3(x2−5x+1))≥0
Now solving the equation by taking log
[5−√212,5+√212]