The set of values of k for which x2−kx+sin−1(sin4)>0 for all real x is
ϕ
(-2, 2)
R
(-2, -2)
sin−1(sin 4)=sin−1{sin(π−4)}=π−4 (∵−π2<π−4<π2) ∵ We have, x2−kx+π−4>0 for all x ϵ R ∵D<0,ie,k2−4(4−π)<0, which is not true for any real k.