The correct option is C m≥5
We have, x2+(m+1)x+m+4=0
Discriminant is Δ=(m+1)2−4(m+4)=m2−2m−15=(m+3)(m−5)
For roots to be real Δ≥0⇒m∈(−∞,−3)∪[5,∞)⇒1
Also for root to be negative αβ>0&α+β<0
⇒m+4>0&−(m+1)<0⇒m>−4&m>−1
⇒m>−1⇒(2)
Thus from (1) and (2) we have m≥5
Hence option 'B' is correct choice.