The correct option is D [132,78]
Let y=(sin−1x)3+(cos−1x)3=(sin−1x+cos−1x)[(sin−1x)2+(cos−1x)2−sin−1x.cos−1x]
⇒y=π2[(sin1−x+cos−1x)2−3sin−1x.cos−1x]
⇒y=π2[π24−3sin−1x(π2−sin−1x)]
⇒y=π2[π216+3(π4−sin−1x)2]
Now we know −π2≤sin−1x≤π2
Thus Range of y is [π332,7π38]
Thus given equation to have solution a∈[132,78]