The set of values of ′x′ for which the formula 2sin−1x=sin−1(2x√1−x2) is true, is
Consider the given equation,
2sin−1x=sin−1(2x√1−x2)
Put, x=sinθ⇒θ=sin−1x
2sin−1sinθ=sin−1(2sinθ√1−sin2θ)
2θ=sin−1(2sinθ√cos2θ)(∵sin2A+cos2)
2θ=sin−1(2sinθcosθ)
2θ=sin−1sin2θ
2θ=2θ
sinx=sinx
Now,
∵−1≤sin x≥1
∴−π2≤ x≥π2
x∈[−π2,π2]
Hence, this is the answer.