The correct option is C (3,∞)
f(x)=log(x2−5x+6x2+x+1)+√1[x2−1]
For f(x) to be defined,
x2−5x+6x2+x+1>0
⇒x2−5x+6>0 [∵x2+x+1>0 ∀ x∈R]
⇒(x−2)(x−3)>0
⇒x∈(−∞,2)∪(3,∞) ...(1)
Also, 1[x2−1]≥0 and [x2−1]≠0
⇒[x2−1]>0
⇒x2−1≥1
⇒x2−2≥0
⇒x∈(−∞,−√2]∪[√2,∞) ...(2)
From (1) and (2), we have
x∈(−∞,−√2]∪[√2,2)∪(3,∞)