The set of values of x in (0,π) satisfying the equation 1+log2sinx+log2sin3x≥0 can't lie in is
1+log2sinx+log2sin3x≥0=log2(2sinxsin3x)≥0
⇒2sinxsin3x≥1
⇒2sin2x(3−4sin2x)≥1
Let sin2x be t
Thus, 6t−8t2−1≥0⇒8t2−6t+1≤0
⇒(2t−1)(4t−1)≤0 or t∈[14,12]
So, sinx∈[12,1√2]
So, the range (0,π),x∈[π6,π4]∪[3π4,5π6]