The correct options are
B x∈(3,∞]∪{−12,12}
C x∈[3,∞)
The critical point
x−3=0
∴ x=3
Consider following cases:
x<3
x2.2x+1+2−(x−3)+2=x22−(x−3)+4+2x−1
⇒x2.2x+1+2−x+5=x22−x+7+2x−1⇒x2.2x+1+2−x+5=x22−x+7+2x−1⇒x2(2x+1−2−x+7)=2x−1−2−x+5⇒x2.2−x+7(22x−6−1)=2−x+5(22x−6−1)⇒2−x+5(22x2−1)(22x−6−1)=0∴2−x+5≠0
x2=14,22x−6=1∴x=±12,2x−6=0∴x=±12,x≠3(∵x<3)x≥3x2.2x+1+2x−3+2=x22x−3+4+2x−1⇒x2.2x+1+2x−1=x22x+1+2x−1
which is true for all x≥3.
∴x2.2x+1+2x−1=x22x+1+2x−1x∈[3,∞)
Combining both cases, the solution of the given equation is
x∈[3,∞)∪{−12,12}.