The correct option is D (cos1,1]
Given : (cos−1x)2−3cos−1x+2>0
For inequality to be satisfied : −1≤x≤1
Let t=cos−1x∈[0,π], then inequality becomes, t2−3t+2>0
⇒(t−1)(t−2)>0
⇒t<1 or t>2
⇒0≤cos−1x<1 or π≥cos−1x>2
Since, cos−1x is decreasing function,
⇒cos1<x≤1 or −1≤x<cos2
∴x∈[−1,cos2) ∪ (cos1,1]