The correct option is
D 5Let P1:2x+3y+5z+1=0⇒Direction ratios (2,3,5)
and P2:3x+4y+6z+2=0⇒Direction ratios (3,4,6)
Direction ratios of the line =∣∣
∣
∣∣^i^j^k235346∣∣
∣
∣∣
=(18−20)^i−(12−15)^j+(8−9)^k
=−2^i−3^j−^k
∴direction ratios of the line is (−2,−3,−1)
If the plane lies on y−axis then y=0 then equation of the line is
2x+5z=−1 .....(1)
3x+6z=−2 .....(2)
On multiplying eqn(1) by 3 and eqn(2) by 2 we have
6x+15z=−3
6x+12z=−4
⇒6x+15z−6x−12z=−3+4
⇒3z=1 or z=13
Put z=13 in (1) we get
2x+5×13=−1
⇒2x+53=−1
⇒2x=−1−53
⇒2x=−3−53
⇒2x=−83
⇒x=−43
∴ the point is (−43,0,13) and
direction ratio is (−2,−3,−1)
Equation of the line is x−x1l=y−y1m=z−z1n
Now the line L1 is x−−43−2=y−0−3=z−13−1
In y−axis the point is (0,y,0)
∴L2=x0=y1=z0
The shortest distance=∣∣
∣∣∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣∣∣
∣∣∣∣
∣
∣∣^i^j^ka1b1c1a2b2c2∣∣
∣
∣∣
where x1=−43,y1=0,z1=13,a1=−2,b1=−3,c1=−1 and x2=0,y2=1,z2=0,a2=0,b2=1,c2=0
The shortest distance=∣∣
∣
∣
∣∣∣∣
∣
∣
∣∣431−13−2−3−1010∣∣
∣
∣
∣∣∣∣
∣
∣
∣∣∣∣
∣
∣∣^i^j^k−2−3−1010∣∣
∣
∣∣
=43(0+1)−1(0−0)−13(−2+0)∣∣(0+1)^i−(0−0)^j+(−2−0)^k∣∣
=43+23∣∣^i−2^k∣∣
=63√1+4
=2√5
Given Shortest distance =2√k
∴2√k=2√5
∴k=5