The correct option is
B ∣∣
∣
∣
∣
∣
∣
∣∣∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣√(b1c2−c1b2)2+(c1a2−a1c2)2+(a1b2−b1a2)2∣∣
∣
∣
∣
∣
∣
∣∣Given lines
x−x1a1=y−y1b1=z−z1c1------(1)
x−x2a2=y−y2b2=z−z2c2------(2)
shortest distance between two line
SD=∣∣
∣∣→AC⋅(→n1×→n2)|→n1×→n2|∣∣
∣∣
AC=→c−→a
where c and a are position vector of line 2 and 1
AC=x2^i+y2^j+z2^k−x1^i−y1^j−z1^k
AC=(x2−x1)^i+(y2−y1)^j+(z2−z1)^k
→n1=a1^i+b1^j+c1^k
→n2=a2^i+b2^j+c2^k
→n1×→n2=(a1^i+b1^j+c1^k)×(a2^i+b2^j+c2^k)
→n1×→n2=∣∣
∣
∣∣^i^j^ka1b1c1a2b2c2∣∣
∣
∣∣
→n1×→n2=^i(b1c2−c1b2)−^j(c1a2−a1c2)+^k(a1b2−b1a2)
∣∣→n1×→n2∣∣=√(b1c2−c1b2)2+(c1a2−a1c2)2+(a1b2−b1a2)2
from formula
SD=∣∣
∣∣→AC⋅(→n1×→n2)|→n1×→n2|∣∣
∣∣
SD=∣∣
∣∣[→AC→n1→n2]|→n1×→n2|∣∣
∣∣
SD=∣∣
∣
∣
∣
∣
∣
∣∣∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣√(b1c2−c1b2)2+(c1a2−a1c2)2+(a1b2−b1a2)2∣∣
∣
∣
∣
∣
∣
∣∣