The shortest distance between the lines¯r=3¯i+5¯j+7¯k+λ(¯i+2¯j+¯k)¯r=−¯i−¯j+¯k+μ(7¯i−6¯j+¯kk) is ?
Consider the problem
Let the given lines be
r=a1+λb2
And r=a2+λb2
Now, Shortest distance between two lines
d=∣∣ ∣ ∣∣(→a2−→a1).(→b1×→b2)∣∣→b1×→b2∣∣∣∣ ∣ ∣∣
where, a1=3¯i+5¯j+7¯k,a2=−¯i−¯j+¯k
b1=¯i+2¯j+¯k,b2=7¯i−6¯j+¯k
Therefore,
a2−a1=−4¯i+4¯j−6¯k
→b1×→b2=∣∣ ∣ ∣∣^i^j^k1217−61∣∣ ∣ ∣∣
=8^i+7^j−20^k
∣∣→b1×→b2∣∣=√82+72+(−202)=√64+49+400=√513
So,
d=∣∣ ∣ ∣∣−4¯i+4¯j−6¯k.(8^i+7^j−20^k)√513∣∣ ∣ ∣∣
d=∣∣∣−32+28+120√513∣∣∣=116√513