The correct option is A 1√6
Lines are, x−12=y−23=z−34=k1(assume) ⟶(1)
and x−23=y−44=z−55=k2(assume) ⟶(2)
So any point on (1) is P(2k1+1,3k1+2,4k1+3)
and any point on (2) is Q(3k2+2,4k2+4,5k2+5)
Now direction ratio of PQ are 3k2−2k1+1,4k2−3k1+2 and 5k2−4k1+2
Since PQ⊥(1)
⇒2(3k2−2k1+1)+3(4k2−3k1+2)+4(5k2−4k1+2)=0
⇒38k2−29k1+16=0 ⟶(3)
Also PQ⊥(2)
⇒3(3k2−2k1+1)+4(4k2−3k1+2)+5(5k2−4k1+2)=0
⇒50k2−38k1+21=0 ⟶(4)
Solving (3) and (4), we get k2=−16,k1=13
Therefore, P=(53,3,133) and Q=(32,103,256)
, PQ=√(32−53)2+(103−3)2+(256−133)2=1√6
Hence, option 'A' is correct.