The correct option is
D 3√30The lines are,
x−33=y−8−1=z−31 ------ ( 1 )x+3−3=y+72=z−64 ------ ( 2 )
Comparing the equations with,
x−x1a1=y−y1b1=z−z1c1 and x−x2a2=y−y2b2=z−z2c2
We get,
⇒ x1=3,y1=8,z1=3 and a1=3,b1=−1,c1=1
⇒ x2=−3,y2=−7,z2=6 and a2=−3,b2=2,c2=4
∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣ =∣∣
∣∣−6−1533−11−324∣∣
∣∣
=−6(−4−2)+15(12+3)+3(6−3)
=−6(−6)+15(15)+3(3)
=36+225+9
=270
⇒ √(a1b2−a2b1)2+(b1c2−b2c1)2+(c1a2−c2a1)2
⇒ √[(3)(2)−(−3)(−1)]2+[(−1)(4)−(2)(1)]2−[(1)(−3)−(4)(3)]2
⇒ √(6−3)2+(−4−2)2+(−3−12)2
⇒ √(3)2+(−6)2+(−15)2
⇒ √9+36+225
⇒ √270
Shortest distance between line is d.
⇒ d=∣∣
∣
∣
∣
∣
∣
∣∣∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣√(a1b2−a2b1)2+(b1c2−b2c1)2+(c1a2−c2a1)2∣∣
∣
∣
∣
∣
∣
∣∣
⇒ d=∣∣∣270√270∣∣∣
⇒ d=√270×√270√270
⇒ d=√270
⇒ d=3√30