The correct option is B 265√5
We know, shortest distance =|(→a−→c)⋅(→b×→d)||→b×→d|
From the given lines, →r=3^i+5^j+7^k+λ(^i+2^j+^k) and →r=−^i−^j+^k+s(7^i−6^j+^k)
we have →a=3^i+5^j+7^k;→c=−^i−^j+^k;→b=^i+2^j+^k;→d=7^i−6^j+^k
On solving we have (→a−→c)=4^i+6^j+6^k and →b×→d=∣∣
∣
∣∣^i^j^k1217−61∣∣
∣
∣∣=8^i+6^j−20^k⇒|→b×→d|=√500
Hence shortest distance =5210√5=265√5