Let ∠CBX=x
Given, BF is the bisector of ∠CBX
∴∠CBF=∠XBF=x2
∠ABE=∠XBF=x2 ----Vertically opposite angles
∠EAB=180∘−∠DAB ----Sum of angles on a straight line is 180∘
=180∘−x
∠AEB=180∘−[∠EAB+∠ABE]=x2
In △AEB, ∠ABE=∠AEB=x2 ----corresponding angles
∴AE=AB
Now we can prove that BC=CF
DE=AD+AE
=AD+AB --------(i)
Similarly,
DF=DC+CF
=DC+BC --------(ii)
AD=BC and AB=DC ---Opposite sides of a parallelogram
So, DE=DF
Hence, DE=DF=AB+BC ---- from (i) and (ii)