The side BC of ΔABC is produced to a point D. The bisectors of ∠A meet side BC in L. If ABC=30∘ and ∠ACD=115∘,
then ∠ALC=
In ΔABC,BC is produced to D ∠B=30∘,∠ACD=115∘
AL is bisector of ∠A
Ext. ∠ACD=∠A+∠B
⇒115∘+∠A=30∘
∴∠A+115∘−30∘=85∘
and ∠C=180∘−115∘=65∘
and ∠CAL=12∠A (∵ AL is bisectors)
=12×85∘=421∘2
In ΔALC,
Ext. ∠ACD=∠ALC+∠CAL
115∘=∠ALC+421∘2
∴∠ALC=115∘−421∘2=72.5∘