Remember (x−α)(x−β)(x−γ)=x3−x2S1+xS2−S3 Since a, b, c are the roots of x2−px2+qx−r=0 s1=a+b+c=p=2sor s=p/2 s2=∑ab=q,s3=abc=r △2=s(s−a)(s−b)(s−c)
=P2(P2−a)(P2−b)(P2−c)
=P2[(P2)2−(P2)2s1+P2s2−s3]
= P2[−p3+4pq−8r8]
∴△=14[p(4pq−p3−8r)]1/2