The correct option is D √2√5−1
Let, sides of right angled triangle Δ ABC are a, ar and ar2.Assume r>1.
∴(ar2)2=a2+a2r2
or, a2r4=a2+a2r2
or, r4=1+r2
or, r4−r2−1=0
Let, r2=t, then
t2−t−1=0
or, t=1±√12−4×(1)×(−1)2×1
or, t=1±√52
or,t=1+√52 and t=1−√52
or,r2=1+√52 and r2=1−√52 [Not possible]
∴r2=1+√52
⇒r=√1+√52=√2√5−1