The correct option is
A 0Let AB, BC and CA be 3x+4y=0, 4x+3y=0 and x=3 respectively.
Since AB and BC do not have any constant terms, B=(0,0)=(x2,y2)
Solving AB and CA gives A=(3,−94)=(x1,y1)
Solving BC and CA gives C=(3,−4)=(x3,y3)
a=BC=√(3−0)2+(0+4)2=√32+42=√4+16=5
b=CA=√(3−3)2+(4−94)2=√(16−94)2=74
c=AB=√(3−0)2+(0+94)2=√32+8116=√164+8116=154
In centre is given by (ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c)
=⎛⎜
⎜
⎜
⎜⎝5×3+0+15×345+7+154,5(−94)+0+154(−4)5+7+154⎞⎟
⎟
⎟
⎟⎠
=⎛⎜
⎜
⎜⎝15+4545+224,−454−155+224⎞⎟
⎟
⎟⎠=(h,k)
h+k=15+454−454−155+224=0.