The sides of a triangle are 120 m,170 m,250 m. Find its area and height of the triangle if the base is 250 m.
We have, Sides of a triangle are 120 m,170 m,250 m
Base of the given triangle =250 m
Let us assume the sides as
a=120 m,b=170 m,c=250 m
s = semi-perimeter =a+b+c2
=(120+170+250)2
=5402
=270
Applying Heron's Formula to find the area of the given triangle
Area of the given triangle =√s(s−a)(s−b)(s−c)
=√270(270−120)(270−170)(270−250)
=√270×150×100×20
=√(3×3×3×10)×(3×5×10)×(10×10)×(2×2×5)
=√3×3––––––×3×3––––––×10×10––––––––×10×10––––––––×2×2––––––×5×5––––––
=3×3×10×10×2×5
=9×10×10×10
=9000
Therefore area of the triangle is 9000 m2
We know that area of a triangle can be given by the formula
Area of triangle =12×base×height
∴9000=12×250× height [∵ area of triangle =9000 m2]
⇒9000=125×height
⇒Height=9000125
⇒Height=72 m