The sides of a triangle are 16 cm, 12 cm and 20 cm. Find:
(i) Area of the triangle
(ii) Height of the triangle, corresponding to the largest side
(iii) Height of the triangle, corresponding to the smallest side.
Sides of Δ are
a =20 cm
b =12 cm
c =16 cm
S=a+b+c2
=20+12+162
=482=24
area of Δ=√s(s−a)(s−b)(s−c)
=√24(24−20)(24−12)(24−16)
=√24×4×12×8
=√12×2×4×12×2×4
=√12×12×4×4×2×2
=12×4×2=96cm2
AD is height of Δ corresponding to largest side.
∴12×BC×AD=96
12×20×AD=96
AD=96×220
BE is height of Δ corresponding to smallest side.
∴12AC×BE=96
12×12×BE=96
BE=96×212
BE =16 cm
(i)96 cm2
(ii) 9.6 cm
(iii)16 cm