Step 1: Find the area of triangle
Given : The sides of a triangle are 35 cm, 54 cm and 61 cm
Let a=35 cm,b=54 cm and c=61 cm
Semi-perimeter(s)=a+b+c2
=35+54+612
=1502
=75
∴Area of triangle=√s(s−a)(s−b)(s−c)
=√75(75−35)(75−54)(75−61)
=√75×40×21×14
=√25×3×4×5×2×7×3×7×2
=5×3×4×7×√5
=420√5 cm2
Step 2: Find the length of the longest altitude
The sides of a triangle are 35 cm, 54 cm and 61 cm
Area of triangle =420√5 cm2
The length of the longest altitude will be corresponding to the shortest base of the given triangle
⇒Base=35 cm
∴Area of triangle=12×Base×Height
⇒12×Base×Height=420√5
⇒Height=420√5×2Base
⇒Height=840√535
=24√5
Thus, the length of the longest altitude is 24√5 cm
Hence, (c) is the correct answer.