Let the sides be k -d, k, k+d i.e. a, b, c
∴ 2s = 3k ∴ sides of equilateral △ is also k.
S=35 area of equilateral △ of same perimeter 3a
S2=925(√34k2)2
s(s−a)(s−b)(s−c)=9×3k425×16
3k2(3k2−k+d)(3k2−k)(3k2−k)(3k2−k−d)=27400k4
3k24(k+2d)(k−2d)4=27400k4
or k2−4d2=925k2 or 16k2=100d2
∴dk=√425=25
hence the sides k-d, k, k+d are in ratio
1−dk,1,1+dk
or 1−25,1,1+25 or 3:5:7.