Let A be the greatest and C the least angle of △ABC.
It is given that a, b, c are in A.P. so that
a+c= 2b ............(1)
Also A-C =900
From (1), Sin A + sinC = 2 sin B= 2 sin (A+C) ........(2)
∴2sinA+C2cosA−C2=4sinA+C2cosA+C2
or cosA−C2=2cosA+C2=2sinB2
∴2sin(B/2)=cos(900/2)=cos450=1/√2, by(2)
Hence sinB2=12√2
and cosB2=√(1−18)=√72√(2)
∴sinB=2sinB2cosB2
= 2.12√(2).√72√(2)=√74.
∴sinA+sinC=2sinB=√7/2 .....(3)
Also sinA−sinC=2cos[(A−C)/2].sin[(A−C)/2]=2sin(B/2)sin450=2.12√(2).1√(2)=12 .....(4)
Addding and subtracting (3) and (4), we get
2sinA=(√7+1)/2
i.e.sinA=(√7+1)/4
and 2sinC=(√7−1)/2
i.e.sinC=(√7−1)/4
Hence a:b:c = sinA: sinB: sinC
=√7+1:√7:√7−1