The sides of a triangle are in AP and its area is 3/5 x (area of an equilateral triangle of the same perimeter) Then, the ratio of the sides is
3:5:7
Here, 2b = a + c and △=35×√34[a+b+c3]2
∴△=3√[3]20b2
∴sqrts(s−a)(s−b)(s−c)=3√[3]20.b2
or √116(a+b+c)(b+c−a)(c+a−b)(a+b−c)=3√320b2
or √3b.(b+c+c−3b)b(2b−c+b−c)=3√320b2
or √(2c−b)(3b−2c)=35b
or 8bc−4c2−3b2=925b2
or 8425b2−8bc+4c2=0
or bc=8±√65−16842528425=57,53
also, 2b = a+c ⇒2bc=ac+1
⇒ac=2bc−1=37,73