The sides of a triangle are sinα,cosα and √1+sinα cosα for some 0<α<π2. Then, the greatest angle of the triangle is
120°
Let sides are a=sinα cosα,c=√1+sinα cosα,Then, cosC=a2+b2−c22ab(∵∠) C is the greatest angle⇒cosC=sin2α+cos2α−(1+sinαcosα)2sinαcosα⇒cosC=−sinαcosα2sinαcosα⇒cosC=−12=cos1202⇒∠C=1200