The correct option is A 15√74
Let a=n−1,b=n,c=n+1
C=2A⇒asinA=csinC
⇒n−1sinA=n+1sin2A=n+12sinAcosA
⇒2(n−1)cosA=n+1
⇒2(n−1)(b2+c2−a22bc)=n+1
⇒(n−1)(b2+c2−a2bc)=n+1
Substituting for a=n−1,b=n,c=n+1 we get
⇒(n−1)(n2+(n+1)2−(n−1)2n(n+1))=n+1
⇒(n−1)[n2+(n+1)2−(n−1)2]=(n+1).n.(n−1)
⇒(n−1).n.(n+4)=n(n+1)2
⇒n2+3n−4=n2+2n+1
⇒n=5 on simplification.
Thus the sides are a=n−1=5−1=4
b=n=5 and c=n+1=5+1=6
and s=152
∴△=√s(s−a)(s−b)(s−c).
∴△=√152(152−4)(152−5)(152−6)
=√152.72.52.32=15√74