Let the sides of the triangle be
n,n+1,n+2, if
A,B,C are the angles of the triangle where
A<B<C
then C=2A and B=180−A−2A⇒B=80−3a.
Thus, by the sine rule, we have
⇒nsinA=n+1sin3A=n+2sin2A
Considering nsinA=n+2sin2A
⇒sin2AsinA=n+2n
⇒2sinAcosAsinA=n+2n
⇒2cosA=n+2n
Squaring both sides. We get,
⇒cos2A=(n+22n)2…(1)
Now considering, nsinA=n+1sin3A
⇒sin3AsinA=n+1n
⇒3sinA−4sin3AsinA=n+1n
3−4sin2A=n+1n
⇒3−4[1−(n+22n)2]=n+1n…(from (1))
⇒3−n+1n=4[1−(n+22n)2]
⇒2n−1n=4[4n2−(n+2)24n2]
⇒n(2n−1)=3n2−4n−4⇒n2−3n−4=0
⇒(n−4)(n+1)=0⇒n=4 an n is a natural number
Thus, sides of the triangle are 4,4+1,4+2⇒4,5,6
∴a=4,b=5,c=6
Thus, a+b+c=15